🏗️ ΘρϵηΠατπ🚧 (under construction)

Master
Let a,bR such that a1 and b>1 and let T,f:N0R0 be defined such that T(n):=aT(nb)+f(n) Then the following statements are true
  • If fO(nlogbaϵ) for some ϵR>0, then T(n)Θ(nlogba)
  • If fΘ(nlogba) then T(n)Θ(nlogbaln(n))
  • If fΘ(nlogb(a)+ϵ) for some constant ϵR>0 and the function f(n):=af(nb) is eventually dominated up to a constant cR by cf where c<1, then T(n)Θ(f)