~ /algebra
The Quaternions
The collection of quaternions are: H : = { a + b i + c j + d k } where a , b , c , d โ R and i 2 = j 2 = k 2 = i j k = โ 1
Real Part of the Quaternion
Given a quaternion q = a + b i + c j + d k , we say that a is the scalar part of the quaternion (or real part), and is denoted by r ( q )
Vector Part of the Quaternion
Given a quaternion q = a + b i + c j + d k , we say that b i + c j + d k is the vector part of the quaternion, and is denoted by v ( q )
Note that we think of the vector part of a quaternion as an element of R 3 , and so it inherits all the operations from that space, such as equality, as noted in the next corollary.
Conjugation Distributes
For any p , q โ H we have p = q โบ ( r ( p ) = r ( q ) โง v ( p ) = v ( q ) )
show proof
Suppose that p = a + b i + c j + d k and q = u + x i + y j + z k then p = q if and only if a = u , b = x , c = y , d = z which is true if and only if r ( p ) = r ( q ) and v ( p ) = v ( q ) , as needed.
Quaternion Addition
( a 1 + b 1 i + c 1 j + d 1 k ) + ( a 2 + b 2 i + c 2 j + d 2 k ) = ( a 1 + a 2 ) + ( b 1 + b 2 ) i + ( c 1 + c 2 ) j + ( d 1 + d 2 ) k ,
Conjugation is Additive
Suppose that p , q โ H then p + q โ = p โ + q โ
show proof
Suppose that p = a + b i + c j + d k and q = u + x i + y j + z k then p + q โ & = ( a + u ) + ( b + x ) i + ( c + y ) j + ( d + z ) โ & = ( a + u ) โ ( b + x ) i โ ( c + y ) j โ ( d + z ) & = a โ b i โ c j โ d k + u โ x i โ y j โ z k & = p โ + q โ
Scalar Quaternion Multiplication
ฮป ( a + b i + c j + d k ) = ฮป a + ( ฮป b ) i + ( ฮป c ) j + ( ฮป d ) k .
Identity Quaternion
e : = i + j + k
Conjugate Quaternion
Given the quaternion q = a + b i + c j + d k , it's conjugate is given by q โ : = a โ b i โ c j โ d k
Vector part of the Conjugate is minus 1 Times the Original
For any p โ H we have v ( p โ ) = โ 1 v ( p )
show proof
Suppose that p = a + b i + c j + d k v ( p โ ) = โ b i + โ c j + โ d k = ( โ 1 ) v ( p ) as needed.
Real part of the Conjugate doesn't Change
For any p โ H we have r ( p โ ) = r ( p )
show proof
Suppose that p = a + b i + c j + d k r ( p โ ) = a = r ( p ) as needed.
Conjugate Doesn't change the Real Part
For any p โ H , such that v ( p ) = 0 , then p โ = p
Conjugate only Applies to Vector Part
For any p โ H we have p โ = r ( p ) โ v ( p )
show proof
p โ = r ( p ) + v ( p ) โ = r ( p ) โ v ( p )
Pure Quaternion
A quaternion p โ H is said to be pure, deiff r ( p ) = 0
Product of Two Quaternions
Suppose that p , q โ H , then we define p q : = r ( p ) r ( q ) โ v ( p ) ยท v ( q ) + r ( p ) v ( q ) + r ( q ) v ( p ) + v ( p ) ร v ( q )
Product Commutes in the Real Part
For any p , q โ H we have r ( p q ) = r ( q p )
show proof
r ( p q ) = r ( p ) r ( q ) โ v ( p ) ยท v ( q ) = r ( q ) r ( p ) โ v ( q ) ยท v ( p ) = r ( q p )
Dot Product of Two Quaternions
Suppose that p , q โ โ , then we define p ยท q : = re ( p ) re ( q ) + v ( p ) ยท v ( q )
Conjugation is a Homomorphism in the Real Part
For any p , q โ H we have r ( p q โ ) = r ( p โ ย q โ )
show proof
First of all, we know
conjugation doesn't change the real part , so we have:
r ( p q โ ) = r ( p q ) = r ( p ) r ( q ) โ v ( p ) ยท v ( q ) and then we know that
r ( p โ ย q โ ) = r ( p โ ) r ( q โ ) โ v ( p โ ) ยท v ( q โ ) Since
minus comes out of the vector part , and constants can get pulled out of the dot product we have that
r ( p โ ) r ( q โ ) โ v ( p โ ) ยท v ( q โ ) = r ( p ) r ( q ) โ ( โ 1 ) ( โ 1 ) v ( p ) ยท v ( q ) = r ( p ) r ( q ) โ v ( p ) ยท v ( q ) therefore we have that
r ( p q โ ) = r ( p โ ย q โ )
Conjugation Swaps Order in the Vector Part
For any p , q โ H we have v ( p q โ ) = v ( q โ ย p โ )
show proof
We recall
that , and so
v ( p q โ ) = v ( r ( p q ) โ v ( p q ) ) = โ v ( p q ) and then we know that
v ( q โ ย p โ ) & = r ( q โ ) v ( p โ ) + r ( p โ ) v ( q โ ) + v ( q โ ) ร v ( p โ ) & = โ r ( q ) v ( p ) โ r ( p ) v ( q ) + v ( q โ ) ร v ( p โ ) & = โ r ( q ) v ( p ) โ r ( p ) v ( q ) + ( โ 1 ) ( โ 1 ) v ( q ) ร v ( p ) & = โ r ( p ) v ( q ) โ r ( q ) v ( p ) โ v ( p ) ร v ( q ) & = โ v ( q p ) as needed.
Conjugation Distributes by Swapping
For any p , q โ H we have p q โ = q โ ย p โ
show proof
We show they are
equal :
r ( p q โ ) = r ( p โ ย q โ ) = r ( q โ ย p โ ) and then we
recall v ( p q โ ) = v ( q โ ย p โ ) , so that
p q โ = q โ ย p โ
Dot Product and Regular Product Commute
Suppose that p , q โ โ , then we define ( p q ) ยท ( p r ) = ( p ยท p ) ( q ยท r )
Quaternion times its Conjugate Equation
Suppose that p โ โ , then we have: q q โ = ( q ยท q ) e