~ /algebra 
 
        The Quaternions
    
        The collection of quaternions  are: H : = { a + b i + c j + d k }   where a , b , c , d โ R   and i 2 = j 2 = k 2 = i j k = โ 1  
 
        Real Part of the Quaternion
    
        Given a quaternion q = a + b i + c j + d k  , we say that a   is the scalar part of the quaternion (or real part), and is denoted by r ( q )  
 
        Vector Part of the Quaternion
    
        Given a quaternion q = a + b i + c j + d k  , we say that b i + c j + d k   is the vector part of the quaternion, and is denoted by v ( q )  
 
Note that we think of the vector part of a quaternion as an element of R 3   , and so it inherits all the operations from that space, such as equality, as noted in the next corollary.
        Conjugation Distributes
    
        For any p , q โ H   we have p = q โบ ( r ( p ) = r ( q ) โง v ( p ) = v ( q ) )  
show proof 
        Suppose that p = a + b i + c j + d k   and q = u + x i + y j + z k   then p = q   if and only if a = u   , b = x   , c = y   , d = z   which is true if and only if r ( p ) = r ( q )   and v ( p ) = v ( q )  , as needed.
    
 
 
        Quaternion Addition
    
( a 1 + b 1 i + c 1 j + d 1 k ) + ( a 2 + b 2 i + c 2 j + d 2 k ) = ( a 1 + a 2 ) + ( b 1 + b 2 ) i + ( c 1 + c 2 ) j + ( d 1 + d 2 ) k ,  
 
        Conjugation is Additive
    
        Suppose that p , q โ H   then p + q โ = p โ + q โ  
show proof 
        Suppose that p = a + b i + c j + d k   and q = u + x i + y j + z k   then p + q โ & = ( a + u ) + ( b + x ) i + ( c + y ) j + ( d + z ) โ & = ( a + u ) โ ( b + x ) i โ ( c + y ) j โ ( d + z ) & = a โ b i โ c j โ d k + u โ x i โ y j โ z k & = p โ + q โ  
 
 
        Scalar Quaternion Multiplication
    
ฮป ( a + b i + c j + d k ) = ฮป a + ( ฮป b ) i + ( ฮป c ) j + ( ฮป d ) k .  
 
        Identity Quaternion
    
e : = i + j + k  
 
        Conjugate Quaternion
    
        Given the quaternion q = a + b i + c j + d k  , it's conjugate is given by q โ : = a โ b i โ c j โ d k  
 
        Vector part of the Conjugate is minus 1 Times the Original
    
        For any p โ H   we have v ( p โ ) = โ 1 v ( p )  
show proof 
        Suppose that p = a + b i + c j + d k   v ( p โ ) = โ b i + โ c j + โ d k = ( โ 1 ) v ( p )   as needed.
    
 
 
        Real part of the Conjugate doesn't Change
    
        For any p โ H   we have r ( p โ ) = r ( p )  
show proof 
        Suppose that p = a + b i + c j + d k   r ( p โ ) = a = r ( p )   as needed.
    
 
 
        Conjugate Doesn't change the Real Part
    
        For any p โ H  , such that v ( p ) = 0  , then p โ = p  
 
        Conjugate only Applies to Vector Part
    
        For any p โ H   we have p โ = r ( p ) โ v ( p )  
show proof 
p โ = r ( p ) + v ( p ) โ = r ( p ) โ v ( p )  
 
 
        Pure Quaternion
    
        A quaternion p โ H   is said to be pure, deiff r ( p ) = 0  
 
        Product of Two Quaternions
    
        Suppose that p , q โ H  , then we define p q : = r ( p ) r ( q ) โ v ( p ) ยท v ( q ) + r ( p ) v ( q ) + r ( q ) v ( p ) + v ( p ) ร v ( q )  
 
        Product Commutes in the Real Part
    
        For any p , q โ H   we have r ( p q ) = r ( q p )  
show proof 
r ( p q ) = r ( p ) r ( q ) โ v ( p ) ยท v ( q ) = r ( q ) r ( p ) โ v ( q ) ยท v ( p ) = r ( q p )  
 
 
        Dot Product of Two Quaternions
    
        Suppose that p , q โ โ  , then we define p ยท q : = re ( p ) re ( q ) + v ( p ) ยท v ( q )  
 
        Conjugation is a Homomorphism in the Real Part
    
        For any p , q โ H   we have r ( p q โ ) = r ( p โ ย  q โ )  
show proof 
        First of all, we know 
conjugation doesn't change the real part , so we have: 
r ( p q โ ) = r ( p q ) = r ( p ) r ( q ) โ v ( p ) ยท v ( q )  and then we know that 
r ( p โ ย  q โ ) = r ( p โ ) r ( q โ ) โ v ( p โ ) ยท v ( q โ )  Since 
minus comes out of the vector part , and constants can get pulled out of the dot product we have that 
r ( p โ ) r ( q โ ) โ v ( p โ ) ยท v ( q โ ) = r ( p ) r ( q ) โ ( โ 1 ) ( โ 1 ) v ( p ) ยท v ( q ) = r ( p ) r ( q ) โ v ( p ) ยท v ( q )  therefore we have that 
r ( p q โ ) = r ( p โ ย  q โ )  
 
 
 
        Conjugation Swaps Order in the Vector Part
    
        For any p , q โ H   we have v ( p q โ ) = v ( q โ ย  p โ )  
show proof 
        We recall 
that , and so 
v ( p q โ ) = v ( r ( p q ) โ v ( p q ) ) = โ v ( p q )  and then we know that 
v ( q โ ย  p โ ) & = r ( q โ ) v ( p โ ) + r ( p โ ) v ( q โ ) + v ( q โ ) ร v ( p โ ) & = โ r ( q ) v ( p ) โ r ( p ) v ( q ) + v ( q โ ) ร v ( p โ ) & = โ r ( q ) v ( p ) โ r ( p ) v ( q ) + ( โ 1 ) ( โ 1 ) v ( q ) ร v ( p ) & = โ r ( p ) v ( q ) โ r ( q ) v ( p ) โ v ( p ) ร v ( q ) & = โ v ( q p )  as needed.
    
 
 
 
        Conjugation Distributes by Swapping
    
        For any p , q โ H   we have p q โ = q โ ย  p โ  
show proof 
        We show they are 
equal : 
r ( p q โ ) = r ( p โ ย  q โ ) = r ( q โ ย  p โ )  and then we 
recall  v ( p q โ ) = v ( q โ ย  p โ ) , so that 
p q โ = q โ ย  p โ  
 
 
 
        Dot Product and Regular Product Commute
    
        Suppose that p , q โ โ  , then we define ( p q ) ยท ( p r ) = ( p ยท p ) ( q ยท r )  
 
        Quaternion times its Conjugate Equation
    
        Suppose that p โ โ  , then we have: q q โ = ( q ยท q ) e  
 
Quaternion Conjugation Is a Rotation Operation
        Fix u โ R 3   q = cos ( ฮธ 2 ) +  
show proof 
        TODO: Add the proof here.