๐Ÿ—๏ธ ฮ˜ฯฯตฮทฮ ฮฑฯ„ฯ€๐Ÿšง (under construction)

Linear Transformation
A linear transformation from V to W is a function T:Vโ†’W with the following properties for any u,vโˆˆV and cโˆˆF
  • T(u+v)=T(u)+T(v)
  • T(cu)=cT(u)
Inner Product
An inner product is a function โŸจยท,ยทโŸฉ:Vร—Vโ†’F where V is a vector space over the field F, it assigns to each pair ๐ฏ,๐ฐโˆˆV a real number โŸจ๐ฏ,๐ฐโŸฉ such that, for all ๐ฎ,๐ฏ,๐ฐโˆˆV and ฮฑโˆˆ๐… and satisfies:
  1. โŸจ๐ฏ,๐ฏโŸฉโ‰ฅ0, with equality if and only if ๐ฏ=0.
  2. โŸจ๐ฏ,๐ฐโŸฉ=โŸจ๐ฐ,๐ฏโŸฉ.
  3. โŸจ๐ฎ+๐ฏ,๐ฐโŸฉ=โŸจ๐ฎ,๐ฐโŸฉ+โŸจ๐ฏ,๐ฐโŸฉ,
  4. โŸจฮฑ๐ฏ,๐ฐโŸฉ=ฮฑโŸจ๐ฏ,๐ฐโŸฉ.
Inner Product Space
An inner product space is a vector space V over the field F together with an inner product
The Dot Product in Rn Forms an Inner Product
The dot product in Rn forms an inner product
Schwarz Inequality
For all x,yโˆˆRn we have |โŸจx,yโŸฉ|โ‰คโ€–xโ€–โ€–yโ€– and |โŸจx,yโŸฉ|=โ€–xโ€–โ€–yโ€– if and only if x,y are collinear
The Norm Satisfies the Triangle Inequality
For any x,yโˆˆRn we have โ€–x+yโ€–โ‰คโ€–xโ€–+โ€–yโ€–