๐๏ธ
ฮ
ฯ
ฯต
ฮท
ฮ
ฮฑ
ฯ
ฯ
๐ง (under construction)
~
/
algebra
/
linear
/
vector_spaces
Vector Space over a Field
A
vector space over a field
F
is a non-empty set
V
with a
binary operation
โ
on
V
and a binary function
โ
:
F
ร
V
โ
V
such that the following hold for any
a
,
b
โ
F
and
u
,
v
โ
V
โ
is associative and commutative
There is a
identity element
0
V
with respect to
โ
1
F
is an
identity element
for
โ
โ
has inverses
for
0
V
โ
distributes into
โ
(
a
+
F
b
)
โ
v
=
(
a
โ
v
)
โ
(
b
โ
v
)
a
โ
(
b
โ
v
)
=
(
a
ยท
F
b
)
โ
v
Subspace of a Vector Space
A subset
W
of a
vector space
V
over a field
F
is called a
subspace
of
V
if
W
itself is a vector space over
F
with the same operations of vector addition and scalar multiplication as
V
. Specifically,
W
is a subspace if:
0
V
โ
W
.
โ
u
,
v
โ
W
,
u
+
v
โ
W
โ
u
โ
W
,
c
โ
F
,
c
ยท
u
โ
W